
- 1 -

DNCL と Python の比較 [早見表]

１ 変数
DNCL 【Python】

通常の変数例：kosu, kingaku_kei 変数名：kosu, Kingaku_kei, _ichikawa3
変数名は英字で始まる英数字と｢_ ｣の 変数名は，・英数字と｢_ ｣の並び
並び ・１文字目は数字以外

・大文字と小文字を区別
配列変数の例：Tokuten[3], Data[2,4] ・予約語でないこと

配列名は先頭文字が大文字 ・文字数の制限はない
※特に説明がない場合， リスト：Tokuten[3], data[2][4]

配列の要素を指定する添字は リスト(配列)名の規則は変数名と同じ
0から始まる ※添字(インデックス)は0から始まる

例；data = [[1,2,3,4,5],[5,6,7,8,9],[10,11,12,13,14]]
のとき，data[2][4]=14 である

２ 文字列
DNCL 【Python】

文字列は 文字列：シングルクォーテーション(')
ダブルクォーテーション（"）で囲む またはダブルクォーテーション(")

moji = "I'll be back." moji2024 = "I'll be back."
message = "祇園精舎の" + "鐘の声" moji2025 = 'I cried "Help me!"'
※ + で連結できる message01 = "諸行無常の"

message02 = '響きあり'
message = message01 + message02
※変数ても +で文字列の連結ができる

３ 代入文
DNCL 【Python】

kosu = 3 , kingaku = 300 kosu = 3 ; kingaku = 300
※複数文を１行で表記できる ※複数文を｢；｣で区切り１行で表記できる

kingaku_goukei = kingaku * kosu Tokuten = [0,0,0,0,0,0,0]
namae = "Komaba" Tokuten = [0]*7
Data = [10,20,30,40,50,60] Tokuten = [0 for k in range(7)] など
Tokuten のすべての値を0にする ※リストは使用前に作成(要素の個数や次
nyuryoku =【外部からの入力】 数を指定)する必要がある

nyuryoku = input() ※文字列型
nyuryoku = int(input()) ※整数型
nyuryoku = float(input())※浮動小数点型

４ 算術演算
DNCL 【Python】

加減乗除の四則演算は， 加減乗除の四則演算は，
『 + 』,『 ｰ 』,『 * 』,『 / 』で表す 『 + 』,『 ｰ 』,『 * 』,『 / 』で表す
整数の除算では， 整数の除算では，
商(整数)を『÷』で，余りを『％』で表す 商(整数)を『 // 』で，余りを『％』で表す
べき乗は『 ** 』で表す べき乗は『 ** 』で表す

５ 比較演算
DNCL 【Python】

『 == 』(等しい),『 ! = 』(等しくない), 『 == 』(等しい),『 ! = 』(等しくない),
『 > 』,『 < 』,『 > = 』,『 < = 』 『 > 』,『 < 』,『 > = 』,『 < = 』

６ 論理演算
DNCL 【Python】

『 and 』(論理積),『 or 』(論理和), 『 and 』(論理積),『 or 』(論理和),
『 not 』(否定) 『 not 』(否定)

注) not [条件式] 例：not signal=="青"

- 2 -

７ 関数
DNCL 【Python】

値を返す関数例： ★ 組み込み/モジュール
kazu = 要素数(Data) kazu = len(data)
saikoro = 整数(乱数()*6)+1 import random

値を返さない関数例：表示する(Data) saikoro = int(random.random()*6)+1
表示する(Ka[i],"の得点は",ten[i],"です") ★ユーザ定義関数

※｢表示する｣関数はカンマ区切りで 定義 ⇒ def 関数名(引数1,引数2,･･･):
※仮引数文字列や数値を連結できる 文･処理 ････

※｢表示する｣関数以外は基本的に return 戻り値
問題中に説明あり 呼出 ⇒ 関数名(引数a,引数b,･･･) ※実引数

☞ '関数'本体の仕様は特に規定がない [蛇足] 変数名は｢1 変数｣のような仕様であるが，

[知識] 乱数()：0以上1未満の小数の乱数(を発生) Pythonでは全角の日本語文字を用いても

∴ 整数(乱数()*6)+1 ⇒ 整数乱数 1,2,3,4,5,6 特に問題が起きないようです

８ 制御文(条件分岐)
DNCL 【Python】

もし x < 3 ならば： もし x = = 3 ならば： if x < 3: if x = = 3:
│ x = x + 1 │ x = x - 1 x = x + 1 x = x - 1
⎿ y = y + 1 そうでなければ： y = y + 1 else:

⎿ y = y * 2 y = y * 2
もし x > = 3 ならば： if x > = 3:

│ x = x - 1 x = x - 1
そうでなくもし x < 0 ならば： elif x < 0:
│ x = x * 2 x = x * 2

そうでなければ： else:
⎿ y = y * 2 y = y * 2

※│と⎿で制御範囲を表し，⎿は制御文の終わりを示す

[参考] 旧DNCLでは，<処理>が１行しかない場合は

全体を１行で書くことが許されていた

例：もし x < 3 ならば x = x + 1 を実行する

９ 制御文(繰返し)
DNCL 【Python】

xを0から9まで1ずつ増やしながら繰り返す: data = [1,2,3,4,5,6,7,8,9,10]
⎿ goukei = goukei + Data[x] goukei = 0

※｢減らしながら｣もある for x in range(10):
n < 10の間繰り返す： goukei = goukei + data[x]
│ goukei = goukei + n ※ループを抜けた後：x⇒9 ,goukei⇒55

⎿ n = n + 1

※│と⎿で制御範囲を表し，⎿は制御文の終わりを示す n = 1, goukei = 0
while n < 10:

☞ ループを抜けた後の各変数の値 goukei = goukei + n
[上の手順] x⇒不明 (旧DNCLの仕様では10) n = n + 1
[下の手順] n⇒10 ※ループを抜けた後：n⇒10 ,goukei⇒45

10 コメント
DNCL 【Python】

atai = 乱数() # 0 以上1未満の乱数 atai = 乱数() # 0 以上1未満の乱数
※１行内において ※１行内において

以降の記述は処理の対象とならない # 以降の記述は処理の対象とならない
[参考] いろいろな言語のコメントアウト

・Pyrhon Ruby (PHP) ⇒ #

・C C++ C# Java JavaScript PHP ⇒ // /* ･･･ */

・BASIC VBA ⇒ '

・HTML ⇒ <!-- ･･･ ---> CSS ⇒ /* ･･･ */

