
- 23 -

①令和４年 大学入試センター 試作問題

使う硬貨

※100円以内の買い物

46円の支払い

10円4枚,5円1枚,1円1枚

⇒ 計6枚

51円支払い2枚,5円釣り1枚

⇒ 計3枚

最小交換硬貨枚数

支払いと釣り銭とで用

いる硬貨の合計が最小

となる枚数

- 24 -

関数

枚数(引数：金額）
･････

戻り値：最小硬貨枚数

例）枚数(5) ⇒ 1
枚数(3) ⇒ 3
枚数(8) ⇒ 4
枚数(46)⇒ 6

46円の支払いの例

支払い：枚数(51)⇒2

釣り銭：枚数(5) ⇒1

計：交換硬貨枚数⇒3

価格 x 円,釣り銭 y 円
とすると，
支払いは， 円

反復

※最小交換硬貨枚数を
知るため，全ての場
合を計算してみる。

釣り銭：0～99と変化

[支払い] [釣り銭]
枚数(46) ＋枚数(0)
枚数(47) ＋ 枚数(1)
枚数(48) ＋ 枚数(2)
枚数(49) ＋ 枚数(3)

：
枚数(145)＋ 枚数(99)

全ての硬貨交換枚数
のうち 一番小さな値
⇒ 最小交換硬貨枚数

【答】ア.6 イ.0：枚数(51)＋枚数(5) ウ.2： x + y エ.1： y

- 25 -

算術演算子

例）9÷3＝3 9％3＝0

8÷3＝2 8％3＝2

7÷3＝2 7％3＝1

6÷3＝2 6％3＝0

5÷3＝1 5％3＝2

4÷3＝1 4％3＝1

3÷3＝1 3％3＝0

2÷3＝0 2％3＝2

1÷3＝0 1％3＝1

0÷3＝0 0％3＝0

☞ Pythonでは

整数値の商は『//』

変数テーブル

kingaku：目標金額

(100円以下)

Kouka：硬貨(配列)
Kouka[0]⇒ 1円玉
Kouka[1]⇒ 5円玉
Kouka[2]⇒ 10円玉
Kouka[3]⇒ 50円玉
Kouka[4]⇒100円玉

maisu：使用硬貨合計

nokori：残りの額

トレース 硬貨の枚数を考えるためのアルゴリズム（ 増分処理 反復 の考え方を含む）

例）82円のとき maisu(初期値0） nokori(初期値82) 具体的な意味

100円玉 82÷100＝0 0 + 0 = 0 100円玉 0枚 硬貨合計 0枚
82％100＝82 82 残額 82円

50円玉 82÷ 50＝1 0 + 1 = 1 50円玉 1枚 硬貨合計 1枚
82％ 50＝32 32 残額 32円

10円玉 32÷ 10＝3 1 + 3 = 4 10円玉 3枚 硬貨合計 4枚
32％ 10＝2 2 残額 2円

5円玉 2÷ 5＝0 4 + 0 = 4 5円玉 0枚 硬貨合計 4枚
2％ 5＝2 2 残額 2円

1円玉 2÷ 1＝2 4 + 2 = 6 1円玉 2枚 硬貨合計 6枚
2％ 1＝0 0 残額 0円

【答】オ.2：46÷10 カ.3：46％10

- 26 -

Kouka = [1,5,10,50,100]

kingaku = 46

maisu = 0 ; nokori = kingaku

for i in range(4,-1,-1):

maisu = maisu + nokori // Kouka[i]

nokori = nokori % Kouka[i]

print(maisu)

初期値の設定

● kingaku は

『例として46円として

いる』のだから

最初は 46 に設定

● maisu は

硬貨の枚数を順に

加算していくので，

最初は 0 に設定

※次第に大きくなる

● nokori は

高い金額の硬貨順に

必要な枚数を決定し，

その都度の残高に当

たる金額だから，

最初は全金額

※反復する度に変化

DNCL 図1 Python 図1 01

☞ ４行目を配列(リスト)で置き換え可能

→Python[02_参考]

【答】キ.1：4から0まで1ずつ減らし ク.1：maisu ケ.0：nokori÷Kouka[i] コ.1：nokori％ Kouka[i]

Kouka = [1,5,10,50,100]

kingaku = 46

maisu = 0 , nokori = kingaku

i を 4から 0まで 1ずつ減らしながら繰り返す:

│ maisu = maisu + nokori ÷ Kouka[i]

⎿ nokori = nokori ％ Kouka[i]

表示する(maisu)

- 27 -

変数テーブル

shiharai：支払いの額

kakaku：商品の価格

tsuri：釣り銭の額

※shiharai
の額だけのお金を出し
tsuri
の額だけの返金を受け
kakaku
の額の商品を買う。

maisu：

shiharai と tsuri

でやりとりした硬貨

の枚数の合計

min_masisu：

それまでの払い方で

の最小硬貨交換枚数

Python 図2の関数 03 トレース tsuri(0～99)とした色々な金額でのやりとり

shiharai kakaku tsuri maisu min_maisu

[START] [初期値 100]

46 46 0 6 6

47 46 1 8 6

48 46 2 10 6

49 46 3 12 6

50 46 4 5 5

51 46 5 3 3

52 46 6 5 3

： ： ： ： ：

145 46 99 10 ？

def 枚数(kingaku):

Kouka = [1,5,10,50,100]

maisu = 0 ; nokori = kingaku

for i in range(4,-1,-1):

maisu = maisu + nokori // Kouka[i]

nokori = nokori % Kouka[i]

return maisu

- 28 -

DNCL 図2 Python 図2 03

【答】サ.3：tsuri シ.0：0 ス.0：枚数(shiharai) セ.2：枚数(tsuri) ソ.0：maisu タ.1：min_maisu

kakaku = 46

min_maisu = 100

i を 0 から 99 まで 1 ずつ増やしながら繰り返す

│ shiharai = kakaku + tsuri

│ maisu = 枚数(shiharai) + 枚数(tsuri)

│ もし miasu < min_maisu

⎿ ⎿ min_maisu = maisu

表示する(min_maisu)

kakaku = 46

min_maisu = 100

for tsuri in range(100):

shiharai = kakaku + tsuri

maisu = 枚数(shiharai) + 枚数(tsuri)

if maisu < min_maisu:

min_maisu = maisu

print(min_maisu)

- 29 -

②令和３年 文部科学省 サンプル問題

変数テーブル

Tomei：党名(配列)
Tomei[0]="Ａ党"
Tomei[1]="Ｂ党"
Tomei[2]="Ｃ党"
Tomei[3]="Ｄ党"

Tokuhyo：
各政党の得票数(配列)

Tokuhyo[0]=1200
Tokuhyo[1]= 660
Tokuhyo[2]=1440
Tokuhyo[3]= 180

sousuu：総得票数

giseki：総議席数

kizyunsuu：
１議席の重み(得票数)

- 30 -

トレース 得票総数を

求めるための反復

Tokuhyo sousuu

初期値 0

Ａ党 1200 1200

Ｂ党 660 1860

Ｃ党 1440 3300

Ｄ党 180 3480

↑
反復を抜けた後の値

DNCL 図3 Python 図3 04

【答】ア.3：3 イ.8：Tokuhyo[m] ウ.b：kizyunsuu

Tomei = ["Ａ党","Ｂ党","Ｃ党","Ｄ党"]

Tokuhyo = [1200,660,1440,180]

sousuu = 0

giseki = 6

mを0から3まで1ずつ増やしながら繰り返す:

⎿ sousuu = sousuu + Tokuhyo[m]

kizyunsuu = sousuu / giseki

表示する("基準得票数：",kizyunsuu)

表示する("比例配分")

mを0から3まで1ずつ増やしながら繰り返す:

⎿ 表示する(Tomei[m],"：",Tokuhyo[m]/kizyunsuu)

Tomei = ["Ａ党","Ｂ党","Ｃ党","Ｄ党"]

Tokuhyo = [1200,660,1440,180]

sousuu = 0

giseki = 6

for m in range(4):

sousuu = sousuu + Tokuhyo[m]

kizyunsuu = sousuu / giseki

print("基準得票数：",kizyunsuu)

print("比例配分")

for m in range(4):

print(Tomei[m],"：",Tokuhyo[m]/kizyunsuu)

- 31 -

変数テーブル

Hikaku：(配列)

配分を比較する数値

Tosen：(配列)
当選者数

※初期値は0に設定

- 32 -

変数テーブル

tosenkei：
決定した当選者の計

トレース 図８ 配列Hikaku と 配列 Tosen の変化（番号順に考えると良い）

⑥ 720 ④ 1

⑧ 480 ⑦ 2

⑫ 480 ⑩ 2

⑯ 480 ⑭ 2

⑱ 360 ⑰ 3

【答】エ.b：720 オ.9：480 カ.9：480 キ.9：480 ク.7：360 ケ.1：1 コ.2：2 サ.2：2 シ.2：2 ス.3：3

- 33 -

DNCL 図9 Python 図9 05

☞ 関数｢切り捨て()｣を用いず，DNCL:Tokuhyo[maxi]÷(Tosen[maxi]+1),Python:Tokuhyo[maxi]//(Tosen[maxi]+1)でもよい。

【答】セ.2：tosenkei ソ.2：max=Hikaku[i] タ.3：Tokuhyo[maxi] チ.8：(Tosen[maxi]+1)

def 切り捨て(x): #関数の定義
return x//1

Tomei = ["Ａ党","Ｂ党","Ｃ党","Ｄ党"]
Tokuhyo = [1200,660,1440,180]
Tosen = [0,0,0,0]
Hikaku = [0,0,0,0] #リスト(配列)の生成
tosenkei = 0
giseki = 6
for m in range(4):
Hikaku[m] = Tokuhyo[m]

while tosenkei < giseki:
max = 0
for i in range(4):
if max < Hikaku[i]:

max = Hikaku[i]
maxi = i

Tosen[maxi] = Tosen[maxi] + 1
tosenkei = tosenkei +1
Hikaku[maxi]=切り捨て(Tokuhyo[maxi]/(Tosen[maxi]+1))

for k in range(4):
print(Tomei[k],"",Tosen[k],"名")

Tomei = ["Ａ党","Ｂ党","Ｃ党","Ｄ党"]
Tokuhyo = [1200,660,1440,180]
Tosen = [0,0,0,0]

tosenkei = 0
giseki = 6
mを0から3まで1ずつ増やしながら繰り返す:
⎿ Hikaku[m] = Tokuhyo[m]
tosenkei < giseki の間繰り返す:
│ max = 0
│ iを0から3まで1ずつ増やしながら繰り返す:
│ │ もし max < Hikaku[i] ならば:
│ │ │ max = Hikaku[i]
│ ⎿ ⎿ maxi = i
│ Tosen[maxi] = Tosen[maxi] + 1
│ tosenkei = tosenkei +1
⎿ Hikaku[maxi]=切り捨て(Tokuhyo[maxi]/(Tosen[maxi]+1))
mを0から3まで1ずつ増やしながら繰り返す:
⎿ 表示する(Tomei[k],"",Tosen[k],"名")

- 34 -

候補者が十分にいる場合

候補者数 当選者数

Ａ党 ∞ ２

Ｂ党 ∞ １

Ｃ党 ∞ ３

Ｄ党 ∞ ０

候補者数が限られる場合

候補者数 当選者数

Ａ党 ５ ３

Ｂ党 ４ １

Ｃ党 ２ ２

Ｄ党 ３ ０

【発展】
左のような場合は，
どのようなプログラム
にすればよいだろうか。

※下線部を追加･修正する

DNCL Python 06

【答】ツ.0：and テ.0：Koho[i]>=Tosen[i]+1

:

Tomei = ["Ａ党","Ｂ党","Ｃ党","Ｄ党"]

Tokuhyo = [1200,660,1440,180]

Tosen = [0,0,0,0]

:

:

│ iを0から3まで1ずつ増やしながら繰り返す:

│ │ もしmax < Hikaku[i] and Koho[i] >= Tosen[i] + 1:ならば

│ │ │ max = Hikaku[i]

│ ⎿ ⎿ maxi = i

:

:

Tomei = ["Ａ党","Ｂ党","Ｃ党","Ｄ党"]

Tokuhyo = [1200,660,1440,180]

Koho = [5,4,2,3]

Tosen = [0,0,0,0]

:

:

for i in range(4):

if max < Hikaku[i] and Koho[i] >= Tosen[i] + 1:

max = Hikaku[i]

maxi = i

:

- 35 -

③令和２年 情報処理学科 試作検討問題

暗号化

平文 暗号文

復 号

- 36 -

この関係は26文字で一周し元に戻るのだから，左への移動量と右へ

の移動量は『26を法とする合同』の関係となっている。

実際，文字識別番号xの文字を左にn文字移動させる場合
．．．．．．

左に1文字移動⇒右に 25 文字移動 ：ｘ－１＝ｘ＋２５ー２６

左に2文字移動⇒右に 24 文字移動 ：ｘ－２＝ｘ＋２４ー２６

左に3文字移動⇒右に 23 文字移動 ：ｘ－３＝ｘ＋２３－２６

左に4文字移動⇒右に 22 文字移動 ：ｘ－４＝ｘ＋２２－２６
：

左にn文字移動⇒右に 文字移動 ；ｘ－ｎ＝ｘ＋ －

【答】ア.1：1 イ.7：7 ウ.2：2 エ.5：5 オ.2：2 カ.6：6 キ.2：2 ク.5：5

- 37 -

変数テーブル

Angoubun：暗号文
(配列)

Hindo ：出現頻度
(配列)

bangou：文字識別番号

関数｢要素数()｣の例
Python 07

関数｢差分()｣の例
Python 08

DNCL 図5 Python 図5 09(一部)

☞ Python 図5 に以下のような変更を加えたものが Pythonプログラム 09 である。

① Pythonプログラム 07関数｢要素数()｣，08関数｢差分()｣ を追加する。
② リスト(配列)Angoubunについては，内容を変更した文字データを組み込み関数 list()によってリストに変換し設定する。

なお，文字データが長文となるので，途中改行しないようトリプルクォーテーション"""で囲む。
③ リスト(配列) Hindoの生成は，Hindo=[0]*26 として繰り返してリストを生成するリストの複製手法を用いる。
④ 結果をグラフ化するために，以下のプログラムを追加する。

import matplotlib.pyplot as plt

x = ["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"]
plt.bar(x, Hindo)
plt.show()

【答】ケ.0：Angoubun[i] コ.4：Hindo(bangou)

def 差分(alp):
n=ord(alp)-ord("a")
if n<0 or n>25:

n=-1
return n

def 要素数(Data):
n = 0
for i in Data:

n = n + 1
return n

Angoubun = ["p","y","e",･･･(省略)･･･,"d","r","."]

配列Hindoのすべての要素に0を代入する

iを0から要素数(Angoubun)-1まで1ずつ増やしながら:

│ bangou = 差分(Angoubun[i])

│ もし bangou != -1 ならば:

⎿ ⎿ Hindo(bangou) = Hindo(bangou)

表示する(Hindo)

Angoubun = ["p","y",･･･(省略)･･･,"r","."]

Hindo = [0,0,0,･･･,0]

for i in range(要素数(Angoubun)):

bangou = 差分(Angoubun[i])

if bangou !=-1:

Hindo[bangou]=Hindo[bangou]+1

print(Hindo)

- 38 -

図6(下の図) 図3(上の図)
暗号文のHindo 一般的な出現頻度

o e
d t
k a
y o

a q
h x
j z
t j

暗号文 abcdefghijklmnopqrstuvwxyzabcdefghijk
Hindo

一般的 abcdefghijklmnopqrstuvwxyz
(平文)

【答】サ.1：1 シ.0：0

- 39 -

変数テーブル

Hukugousuu：シフト数

(配列)

Hirabun ：平文

(配列)

☞ 拡大図は次頁下段

【比較演算子】
DNCLとPythonは同じ
等しい ＝＝
等しくない ！＝
より大 ＞
より小 ＜
以 上 ＞＝
以 下 ＜＝

関数｢文字()｣の例
Python 10

DNCL 図7 Python 図7 11(一部)

☞ Python 図７ に以下のような変更を加えたものが Pythonプログラム 09 である。

① Pythonプログラム 07関数｢要素数()｣，08関数｢差分()｣，10関数｢文字()｣ を追加する。
② リスト(配列)Angoubunについては，内容を変更した文字データを組み込み関数 list()によってリストに変換し設定する。

なお，文字データが長文となるので，途中改行しないようトリプルクォーテーション"""で囲む。
③ リスト(配列) Hirabunの生成は，Hirabun=[""]*要素数(Angoubun) として繰り返しのリスト生成手法を用いる。
④ 出力については，文字を連結して表示させるためのプログラムコードを追加する。

【答】ス.0：bangou+hukugousuu セ.3：bangou + hukugousuu - 26 ソ.6：Angoubun[i]

def 文字(num):
alp="アルファベットでない"
if num>=0 and num<=25:
code=num+ord("a")
alp=(chr(code))

return alp

Angoubun = ["p","y","e",･･･(省略)･･･,"d","r","."]
配列変数 Hirabun を初期化する
hukugousuu = 26 - 10
i を 0 から 要素数(Angoubun)-1 まで 1 ずつ増やしながら:

│ bangou = 差分(Angoubun[i])
│ もし bangou != -1 ならば:
│ │ もし bango + hukugousuu <= 25 ならば:
│ │ │ Hirabun[i]=文字(bango + hukugousuu)
│ │ そうでなければ:
│ │ ⎿ Hirabun[i]=文字(bango + hukugousuu - 26)
│ そうでなければ:
⎿ ⎿ Hirabun[i] = Angoubun[i]

表示する(Hirabun)

Angoubun = ["p","y","e",･･･(省略)･･･,"r","."]
Hirabun = [""]*要素数(Angoubun)
hukugousuu = 26 - 10
for i in range(要素数(Angoubun)):
bangou = 差分(Angoubun[i])
if bangou != -1:

if bangou + hukugousuu <= 25:
Hirabun[i] = 文字(bangou + hukugousuu)

else:
Hirabun[i] = 文字(bangou + hukugousuu -26)

else:
Hirabun[i] = Angoubun[i]

print(Hirabun)

- 40 -

合同式

☞ FocusGold 数学ⅠA
P.544 参照

例) 10 ≡ 4 (mod 3)
13 ≡ -2 (mod 5)

26を法として合同な値

【算術演算子】
DNCL Python

加算 ＋ ＋
減算 ー ー
乗算 * *
除算 / /
切捨除算 ÷ //
剰余算 ％ ％
べき乗 ** **

【答】タ.1：(bangou + hukugousuu) チ.1：26

